Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[88]

в рамках традиционной технологии оказалось невозможным. Поскольку оксидный слой довольно мягкий, он крошится при "столкновениях" с головками (например, при случайных сотрясениях накопителя). Диски с таким рабочим слоем использовались с 1955 года, и продержались они так долго благодаря простоте технологии и низкой стоимости. Однако в современных моделях накопителей они полностью уступили место тонкопленочным дискам.

Тонкопленочный слой

Тонкопленочный рабочий слой имеет меньшую толщину, он прочнее, и качество его покрытия гораздо выше. Эта технология легла в основу производства накопителей нового поколения, в которых удалось существенно уменьшить величину зазора между головками и поверхностями дисков, что позволило повысить плотность записи. Сначала тонкопленочные диски использовались только в высококачественных накопителях большой емкости, но сейчас они применяются практически во всех накопителях.

Термин тонкопленочный рабочий слой очень удачен, так как это покрытие гораздо тоньше, чем оксидное. Тонкопленочный рабочий слой называют также гальванизированным или напыленным, поскольку наносить тонкую пленку на поверхность дисков можно по-разному.

Тонкопленочный гальванизированный рабочий слой получают путем электролиза. Это происходит почти так же, как при хромировании бампера автомобиля. Алюминиевую подложку диска последовательно погружают в ванны с различными растворами, в результате чего она покрывается несколькими слоями металлической пленки. Рабочим слоем служит слой из сплава кобальта толщиной всего около 1 микродюйма (приблизительно 0,025 мкм).

Метод напыления рабочего слоя заимствован из полупроводниковой технологии. Суть его сводится к тому, что в специальных вакуумных камерах вещества и сплавы вначале переводятся в газообразное состояние, а затем осаждаются на подложку. На алюминиевый диск сначала наносится слой фосфорита никеля, а затем магнитный кобальтовый сплав, толщина которого составляет всего 1-2 микродюйма (0,025-0,05 мкм). Затем поверх магнитного слоя на диск наносится очень тонкое (порядка 0,025 мкм) углеродное защитное покрытие, обладающее исключительной прочностью. Это самый дорогостоящий процесс из всех описанных выше, так как для его проведения необходимы условия, приближенные к полному вакууму.

Как уже отмечалось, толщина магнитного слоя, полученного методом напыления, составляет около 0,025 мкм. Его исключительно гладкая поверхность позволяет сделать зазор между головками и поверхностями дисков гораздо меньшим, чем это было возможно раньше (0,076 мкм). Чем ближе к поверхности рабочего слоя располагается головка, тем выше плотность расположения зон смены знака на дорожке записи и, следовательно, плотность диска. Кроме того, при увеличении напряженности магнитного поля по мере приближения головки к магнитному слою увеличивается амплитуда сигнала; в результате соотношение "сигнал-шум" становится более благоприятным.

И при гальваническом осаждении, и при напылении рабочий слой получается очень тонким и прочным. Поэтому вероятность "выживания" головок и дисков в случае их контакта друг с другом на большой скорости существенно повышается. И действительно, современные накопители с дисками, имеющими тонколленочные рабочие слои, практически не выходят из строя при вибрациях и сотрясениях. Оксидные покрытия в этом отношении гораздо менее надежны. Если бы вы смогли заглянуть внутрь корпуса накопителя, то увидели бы, что тонкопленочные покрытия дисков напоминают серебристую поверхность зеркал.

Двойной антиферромагнитный слой

Последним достижением в технологии изготовления носителей жестких дисков является использование антиферромагнитных двойных слоев (antiferromagnetically coupled - AFC), позволяющих существенно увеличить плотность рабочего слоя, превысив наложенные ранее ограничения. Увеличение плотности материала дает возможность уменьшить толщину магнитного слоя диска. Плотность записи жестких дисков (которая выражается в количестве дорожек на дюйм или в числе бит на дюйм) достигла той точки, в которой кристаллы магнитно-


го слоя, используемые для хранения данных, становятся настолько малы, что это приводит к их нестабильности и, как следствие, к низкой надежности запоминающего устройства. Границы плотности, получившие название суперпара магнитного ограничения, должны находиться в пределах от 30 до 50 Гбит/дюйм:, В настоящее время плотность записи данных уже достигла 35 Гбит/дюйм1, т.е. супер парамагнитное ограничение становится довольно существенным фактором, определяющим свойства создаваемых накопителей.

Носители AFC состоят из двух магнитных слоев, разделенных довольно тонкой пленкой металлического рутения, толщина которой 3 атома (6 ангстрем). Для описания этого сверхтопкого слоя рутения использовался шутливый термин "пыльца эльфов" (pixie dust), придуманный в IBM. Подобная многослойная конструкция образует антиферромагнитное соединение, состоящее из верхнего и нижнего магнитных слоев, что позволяет различать эти слои по всей видимой высоте жесткого диска. Такая конструкция дает возможность использовать физически более толстые магнитные слои, имеющие более устойчивые кристаллы большого размера, благодаря чему носители могут функционировать как ординарный слой, отличающийся гораздо меньшей общей толщиной.

В 2001 голу компания IBM использовала технологию AFC при создании целой серии 2,5-дюймовых накопителей Travelstar 30GN для портативных компьютеров; жесткие диски этого типа стали первыми накопителями с рабочим слоем AFC, появившимися на рынке. Кроме того, IBM начала создавать 3,5-дюймовые накопители с рабочим слоем AFC, используемые в настольных компьютерах. Первым накопителем этого типа стал Deskstar 120 GXP. Использование рабочего слоя AFC позволит, как ожидается, повысить плотность записи данных до 1000 Гбит/дюйм1 и более.

Головки чтения/записи

В накопителях на жестких дисках для каждой из сторон каждого диска предусмотрена собственная головка чтения/записи. Все головки смонтированы на общем подвижном каркасе и перемещаются одновременно.

Конструкция каркаса с головками довольно проста. Каждая головка установлена на конце рычага, закрепленного на пружине и слегка прижимающего ее к диску. Мало кто знает о том, что диск как бы зажат между парой головок (сверху и снизу). И если бы это не повлекло за собой никаких последствий, можно было бы провести небольшой эксперимент: открыть накопитель и приподнять пальцем верхнюю головку. Как только бы вы ее отпустили, она вернулась бы в первоначальное положение (то же самое произошло бы и с нижней головкой).

На рис. 9,10 показана стандартная конструкция механизма привода головок с подвижной катушкой.

Рис. 9.10. Головки чтения/записи и поворотный приводе подвижной катушкой


Когда накопитель выключен, головки касаются дисков под действием пружин. При раскручивании дисков аэродинамическое давление под головками повышается и они отрываются от рабочих поверхностей ("взлетают"). Когда диск вращается на полной скорости, зазор между ним и головками может составлять 0,5-5 микродюймов и даже больше.

В начале 1960-х годов величина зазора между диском и головками составляла 200-300 микродюймов; в современных накопителях она достигает 0,5 нм.

Внимание!

Общая тенденция такова: чем раньше был выпущен накопитель и чем меньше его емкость, тем больше зазор между головками и поверхностями дисков. Именно из-за малого размера этого зазора блок HDA можно вскрывать только в абсолютно чистых помещениях: любая пылинка, лопавшая а зазор, может привести к ошибкам при считывании данных и даже к столкновению головок с дисками на полном ходу. В последнем случае может быть повреждена или головка, или диск, чт о одинаково неприятно.

Именно поэтому сборка блоков HDA выполняется только в чистых помещениях, соответствующих требованиям класса 100 (или даже более высоким). Это означает, что в одном кубическом футе воздуха может присутствовать не более 100 пылинок размером до 0,5 мкм. Для сравнения: стоящий неподвижно человек каждую минуту выдыхает порядка 500 таких частиц! Поэтому помещения оснащаются специальными системами фильтрации и очистки воздуха. Блоки HDA можно вскрывать только в таких условиях.

Поддержка столь стерильных условий стоит немалых денег. Некоторые производители выпускают "чистые цеха" в настольном исполнении. Стоят они всего несколько тысяч долларов и выглядят, как большие ящики с прозрачными стенками, в которые вмонтированы перчатки для рук оператора. Прежде чем приступить к работе, оператор должен вставить в ящик устройство и все необходимые инструменты, затем закрыть ящик и включить систему фильтрации. Через некоторое время можно будет начинать разборку и прочие манипуляции с накопителем.

Существуют и другие способы создания стерильных условий. Представьте себе, например, монтажный стол, отгороженный от окружающего пространства воздушной завесой, причем непосредственно на рабочее место под давлением постоянно подается очищенный воздух. Это напоминает устанавливаемые на зиму в дверях магазинов "занавески" из горячего воздуха, которые не мешают проходу, но и не дают теплу из помещения выйти наружу.

Поскольку подобное оборудование стоит довольно дорого, за ремонт накопителей на жестких дисках обычно берутся только их производители.

По мере развития технологии производства дисковых накопителей совершенствовались и конструкции головок чтения/записи. Первые головки представляли собой сердечники с обмоткой (электромагниты). По современным меркам их размеры были огромными, а плотность записи - чрезвычайно низкой. За прошедшие годы конструкции головок прошли долгий путь развития от первых головок с ферритовыми сердечниками до современных гигантских магнитореэистивных моделей.

Механизмы привода головок

Пожалуй, еще более важной деталью накопителя, чем сами головки, является механизм, который устанавливает их в нужное положение и называется приводом головок. Именно с его помощью головки перемещаются or центра к краям диска и устанавливаются на заданный цилиндр.

Привод с подвижной ттушкой используется практически во всех современных накопителях. В отличие от систем с шаговыми двигателями, в которых перемещение головок осуществляется вслепую, привод с подвижной катушкой использует сигнал обратной связи, чтобы можно было точно определить положения головок относительно дорожек и скорректировать их в случае необходимости. Такая система обеспечивает более высокое быстродействие, точность и надежность, чем традиционный приводе шаговым двигателем.

Привод с подвижной катушкой работает по принципу злектро магнетизм а. По конструкции он напоминает обычный громкоговоритель. Как известно, в громкоговорителе подвижная



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59] [стр.60] [стр.61] [стр.62] [стр.63] [стр.64] [стр.65] [стр.66] [стр.67] [стр.68] [стр.69] [стр.70] [стр.71] [стр.72] [стр.73] [стр.74] [стр.75] [стр.76] [стр.77] [стр.78] [стр.79] [стр.80] [стр.81] [стр.82] [стр.83] [стр.84] [стр.85] [стр.86] [стр.87] [стр.88] [стр.89] [стр.90] [стр.91] [стр.92] [стр.93] [стр.94] [стр.95] [стр.96] [стр.97] [стр.98] [стр.99] [стр.100] [стр.101] [стр.102] [стр.103] [стр.104] [стр.105] [стр.106] [стр.107] [стр.108] [стр.109] [стр.110] [стр.111] [стр.112] [стр.113] [стр.114] [стр.115] [стр.116] [стр.117] [стр.118] [стр.119] [стр.120] [стр.121] [стр.122] [стр.123] [стр.124] [стр.125] [стр.126] [стр.127] [стр.128] [стр.129] [стр.130] [стр.131] [стр.132] [стр.133] [стр.134] [стр.135] [стр.136] [стр.137] [стр.138] [стр.139] [стр.140] [стр.141] [стр.142] [стр.143] [стр.144] [стр.145] [стр.146] [стр.147] [стр.148] [стр.149] [стр.150] [стр.151] [стр.152] [стр.153] [стр.154] [стр.155] [стр.156] [стр.157] [стр.158] [стр.159] [стр.160] [стр.161] [стр.162] [стр.163] [стр.164] [стр.165] [стр.166] [стр.167] [стр.168] [стр.169] [стр.170] [стр.171] [стр.172] [стр.173] [стр.174] [стр.175] [стр.176] [стр.177] [стр.178] [стр.179] [стр.180] [стр.181] [стр.182] [стр.183] [стр.184] [стр.185] [стр.186] [стр.187] [стр.188] [стр.189] [стр.190] [стр.191] [стр.192] [стр.193] [стр.194] [стр.195] [стр.196] [стр.197] [стр.198] [стр.199] [стр.200] [стр.201] [стр.202] [стр.203] [стр.204] [стр.205] [стр.206] [стр.207] [стр.208] [стр.209] [стр.210] [стр.211] [стр.212] [стр.213] [стр.214] [стр.215] [стр.216] [стр.217] [стр.218] [стр.219] [стр.220] [стр.221] [стр.222] [стр.223]