Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[48]

или его ограниченную модернизацию в будущем. Процессоры до Pentium 111 и Athlon обычно впаивались в системную плату или устанавливались в виде различных мобильных модулей, что значительно сокращало возможности их модернизации и замены. В табл. 5.4 приведены характеристики различных гнезд/разъемов, используемых в ноутбуках, и перечислены процессоры, подходящие для установки в эти разъемы.

Таблица 5.4. Спецификации разъемов центрального процессоре

Разъем

Количество

Расположение

Напряжение питания, В Поддерживаемые процессоры

контактов

контактов

ММС-1

2B0

70x4

5В-2Г

Mobile Pentium/Celeron/Pentium II MMC-1

ММС-2

400

40x5

5В-2Г

Mobile Celeron/Pentium II/III MMC-2

МС

240

30x8

Auto VRM

Mobile Pentium ll MC

Micro-PGAI

615

24x26 mPGA

Auto VRM

Mobile Celeron/Pentium II micro-PGA 1

Mtero-PGA2

495

21x24 mPGA

Auto VRM

Mobile Celeron/Pentium 111 micro-PGA2

Socket 478

478

26x26 mPGA

Auto VRM

Настольный Celeron/Pentium 4 FC-PGA2

mPGA479M

479

26x26 mPGA

Auto VRM

Mobile Celeron/Pentium III/4/M micro-FCPGA

Socket A (462)

462

37x37 SPGA

Auto VRM

Mobile/Desktop Ouron/Athlon 4/Athlon XP-M

Socket 754

754

29x29 mPGA

Auto VRM

Mobile/Desktop Athlon 64

Автоматический модуль регулирования напряжения (Auto VRM) встроен я мобильный модуль, что позволяет процессору работать с большим диапазоном напряжений.

Auto VRM - модуль с автоматическим выбором напряжения е зависимости от контактов VID процессора.

Обратите внимание: в некоторых ноутбуках применяются настольные версии процессоров, поэтому системная плата содержит настольный вариант гнезда для центрального процессора. Однако в большинстве ноутбуков используются специализированные процессоры и разъемы. Сам факт совпадения разъема на системной плате с контактными выводами процессора еще не гарантирует работоспособности процессора. Например, версии процессоров Celeron, Pentium III, Pentium 4 и Pentium M устанавливаются в разъем mPGA479M, но работоспособными в этом разъеме будут только некоторые модели процессоров. Установка других процессоров может привести к их физическому повреждению. Назначение контактных выводов у разных моделей процессоров различается.

Наборы микросхем системной логики

Современные системные платы невозможно представить без микросхем системной логики. Набор микросхем подобен системной плате. Другими словами, две любые платы с одинаковым набором микросхем функционально идентичны. Набор микросхем системной логики включает в себя интерфейс шины процессора (которая называется также Front-Side Bus - FSB), контроллеры памяти, контроллеры шины, контроллеры ввода-вывода и т.п. Все схемы системной платы также содержатся в наборе микросхем. Если сравнивать процессор компьютера с двигателем автомобиля, то аналогом набора микросхем является, скорее всего, шасси. Оно представляет собой металлический каркас, служащий для установки двигателя и выполняющий роль промежуточного звена между двигателем и внешним миром. Набор микросхем - это рама, подвеска, рулевой механизм, колеса и шины, коробка передач, карданный вал, дифференциал и тормоза. Шасси автомобиля представляет собой механизм, преобразующий энергию двигателя в поступательное движение транспортного средства. Набор микросхем, в свою очередь, является соединением процессора с различными компонентами компьютера. Процессор не может взаимодействовать с памятью, платами адаптера и различными устройствами без помощи наборов микросхем. Если воспользоваться медицинской терминологией и сравнить процессор с головным мозгом, то набор микросхем системной логики по праву займет место позвоночника и центральной нервной системы.

Набор микросхем управляет интерфейсом или соединениями процессора с различными компонентами компьютера. Поэтому он определяет в конечном счете тип и быстродействие


используемого процессора, рабочую частоту шины, скорость, тип и объем памяти. В сущности, набор микросхем относится к числу наиболее важных компонентов системы, даже, наверное, более важных, чем процессор. Мне приходилось видеть системы с мощными процессорами, которые проигрывали в быстродействии системам, содержащим процессоры меньшей частоты, но более функциональные наборы микросхем. Во время соревнований опытный гонщик часто побеждает не за счет высокой скорости, а за счет умелого маневрирования. При компоновке системы я бы начинал в первую очередь с набора микросхем системной логики, так как именно от его выбора зависит эффективность процессора, модулей памяти, устройств ввода-вывода, а также разнообразные возможности расширения.

Номера моделей наборов микросхем системной логики Intel

Ниже приведен шаблон нумерации наборов микросхем системной логики компании Intel.

Номер набора микросхем системной логики Поколение процессора

4 го

Р4 (486)

430хх

Р5 (Pentium)

440ХХ

Р6 (Pentium Pro/Pentium II/Pentium III)

8хх

P6/P7 (Pentium If/Pentium Ill/Pentium 4/Penlium M) с hub-архитэктурой

Вт

P7 (Pentium 4/Pentium M)

450хх

P6 Server < Pentium Pro/Pentium 11/111 Xeon)

Е72хх

Рабочие станции Xeon с hub-архитектурой

Е75>ск

Сервер Xeon с tiub-архитектурой

450хх

Процессор Itanium

Процессор Itanium 2 с hub-архитектурой

По номеру на большей микросхеме системной платы можно идентифицировать набор микросхем системной логики. Например, в системах на базе процессоров Pentium П/Ш широко использовался набор микросхем системной логики 440ВХ, который состоит из двух компонентов: 82443ВХ North Bridge и 82371 EX South Bridge. Набор микросхем 845 поддерживает процессор Pentium 4 и состоит из двух основных частей: 82845 Memory Controller Hub (MCH) и 82801BA I/O Controller Hub (1CH2). Прочитав логотип компании (Intel или какой-либо другой), а также номера компонентов и комбинации символов микросхем системной платы, можно легко идентифицировать набор микросхем, используемый в конкретной системе.

При создании наборов микросхем Intel использует два различных типа архитектуры: North/South Bridge и более современную hub-архитектуру, которая применяется во всех последних наборах микросхем системной логики серии 800/900.

Наборы микросхем системной логики для процессоров AMD Athlon/Duron

Выпустив на рынок процессоры Athlon, Athlon ХР, Athlon MP и больше не производимый Duron, компания AMD пошла на рискованный шаг: для них не существовало наборов микросхем системной логики, а кроме того, они были несовместимы с существующими разъемами Intel для процессоров Pentium II/III и Celeron. Вместо "подгонки" к существующим стандартам Intel компания AMD разработала собственный набор микросхем и на его базе системные платы для процессоров Athlon/Duron.

Этот набор микросхем получил название AMD 750 (кодовое название Irongate) и поддерживает процессоры Socket/Slot А. Он состоит из микросхем 751 System Controller (компонент North Bridge) и 756 Peripheral Bus Controller (компонент South Bridge). Затем AMD представила набор микросхем AMD-760 для процессоров Athlon/Duron, который стал первым основным набором микросхем системной логики, поддерживающим память DDR SDRAM. Он состоит из двух микросхем: AMD-761 System Bus Controller (компонент North Bridge) и AMD-766 Peripheral Bus Controller (компонент South Bridge). Хотя компания AMD в контексте получения рыночной прибыли больше не полагается на продажи собственных наборов микросхем, ее пример вдохновил такие компании, как VIA Technologies, NVIDIA и SIS, разрабатывать наборы микро-


а

схем специально для процессоров AMD, устанавливаемых в гнезда Slot А, позднее в Socket А и Socket 754, В результате производители системных плат представили на рынке множество моделей своей продукции, благодаря чему процессоры Athlon заняли достойную нишу на рынке и стали реальным конкурентом процессорам Intel.

Архитектура North/South Bridge

Большинство ранних версий наборов микросхем Intel (и практически все наборы микросхем других производителей) созданы иа основе многоуровневой архитектуры и содержат компоненты North Bridge и South Bridge, а также микросхему Super I/O.

North Bridge. Этот компонент представляет собой соединение быстродействующей шины процессора (400/266/200/133/100/66 МГц) с более медленными шинами AGP (533/266/133/66 МГц) и PCI (33 МГц). Обозначение микросхемы North Bridge зачастую дает название всему набору микросхем; например, в наборе микросхем 440ВХ номер микросхемы North Bridge - 82443ВХ.

South Bridge. Этот компонент служит мостом между шиной PCI (66/33 МГц) и более медленной шиной ISA (8 МГц).

Super I/O. Это отдельная микросхема, подсоединенная к шине ISA, которая фактически не является частью набора микросхем и зачастую поставляется сторонним производителем, например National Semiconductor или Standard Microsystems Corp. (SMSC). Микросхема Super I/O содержит обычно используемые периферийные элементы, объединенные в одну микросхему.

Наборы микросхем, созданные за последние годы, позволяют поддерживать различные типы процессоров, скорости шин и схемы периферийных соединений.

Расположение всех микросхем и компонентов типичной системной платы AMD Socket А, использующей архитектуру North/South Bridge, показано на рис. 4.17.

Компонент North Bridge иногда называют контроллером РАС (PCI/AGP Controller). В сущности, он является основным компонентом системной платы и единственной, за исключением процессора, схемой, работающей на полной частоте системной платы (шины процессора). В современных наборах микросхем используется однокристальная микросхема North Bridge; в более ранних версиях находилось до трех отдельных микросхем, составляющих полную схему North Bridge.

Компонент South Bridge обладает более низким быстродействием и всегда находится на отдельной микросхеме. Одна и та же микросхема South Bridge может использоваться в различных наборах микросхем системной логики. (Разные типы схем North Bridge, как правило, разрабатываются с учетом того, чтобы мог использоваться один и тот же компонент South Bridge.) Благодаря модульной конструкции набора микросхем системной логики появилась возможность снизить стоимость и расширить поле деятельности для изготовителей системных плат. South Bridge подключается к шине PCI (33 МГц) и содержит интерфейс шины ISA (8 МГц). Кроме того, обычно она содержит две схемы, реализующее интерфейс контроллера жесткого диска IDE и интерфейс USB (Universal Serial Bus- универсальная последовательная шина), а также схемы, реализующие функции памяти CMOS и часов. South Bridge содержит также все компоненты, необходимые для шины ISA, включая контроллер прямого доступа к памяти и контроллер прерываний.

Микросхема Super I/O, которая является третьим компонентом системной платы, соединена с шиной ISA (8 МГц) и содержит все стандартные периферийные устройства, встроенные в системную плату. Например, большинство микросхем Super I/O поддерживают параллельный порт, два последовательных порта, контроллер гибких дисков, интерфейс клавиатура/мышь. К числу дополнительных компонентов могут быть отнесены CMOS RAM/Clock, контроллеры IDE, а также интерфейс игрового порта. Системы, содержащие порты IEEE-1394 и SCSI, используют для портов этого типа отдельные микросхемы.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59] [стр.60] [стр.61] [стр.62] [стр.63] [стр.64] [стр.65] [стр.66] [стр.67] [стр.68] [стр.69] [стр.70] [стр.71] [стр.72] [стр.73] [стр.74] [стр.75] [стр.76] [стр.77] [стр.78] [стр.79] [стр.80] [стр.81] [стр.82] [стр.83] [стр.84] [стр.85] [стр.86] [стр.87] [стр.88] [стр.89] [стр.90] [стр.91] [стр.92] [стр.93] [стр.94] [стр.95] [стр.96] [стр.97] [стр.98] [стр.99] [стр.100] [стр.101] [стр.102] [стр.103] [стр.104] [стр.105] [стр.106] [стр.107] [стр.108] [стр.109] [стр.110] [стр.111] [стр.112] [стр.113] [стр.114] [стр.115] [стр.116] [стр.117] [стр.118] [стр.119] [стр.120] [стр.121] [стр.122] [стр.123] [стр.124] [стр.125] [стр.126] [стр.127] [стр.128] [стр.129] [стр.130] [стр.131] [стр.132] [стр.133] [стр.134] [стр.135] [стр.136] [стр.137] [стр.138] [стр.139] [стр.140] [стр.141] [стр.142] [стр.143] [стр.144] [стр.145] [стр.146] [стр.147] [стр.148] [стр.149] [стр.150] [стр.151] [стр.152] [стр.153] [стр.154] [стр.155] [стр.156] [стр.157] [стр.158] [стр.159] [стр.160] [стр.161] [стр.162] [стр.163] [стр.164] [стр.165] [стр.166] [стр.167] [стр.168] [стр.169] [стр.170] [стр.171] [стр.172] [стр.173] [стр.174] [стр.175] [стр.176] [стр.177] [стр.178] [стр.179] [стр.180] [стр.181] [стр.182] [стр.183] [стр.184] [стр.185] [стр.186] [стр.187] [стр.188] [стр.189] [стр.190] [стр.191] [стр.192] [стр.193] [стр.194] [стр.195] [стр.196] [стр.197] [стр.198] [стр.199] [стр.200] [стр.201] [стр.202] [стр.203] [стр.204] [стр.205] [стр.206] [стр.207] [стр.208] [стр.209] [стр.210] [стр.211] [стр.212] [стр.213] [стр.214] [стр.215] [стр.216] [стр.217] [стр.218] [стр.219] [стр.220] [стр.221] [стр.222] [стр.223]