Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[254]

Определение видимых поверхностей. Определение пикселей, покрываемых ближайшими к зрителю объектами.

Анимация. Быстрое и четкое переключение между последовательными кадрами движущегося изображения.

Сглаживание. Плавное изменение цветовых границ для сглаживания контуров формируемых объектов.

Технологии трехмерной графики

Практически во всех ускорителях трехмерной графики применяются описанные ниже технологии.

Затуманивание. Имитация газа или тумана в играх.

Затенение Гуро. Интерполяция цветов для сглаживания неровностей окружности и сферы.

Альфа-смешивание. Одна из первых технологий трехмерной графики, используемая для создания реалистичных объектов, например "прозрачного" дыма, воды и стекла.

Расширенные технологии трехмерной графики

Ниже перечислены технологии, наиболее часто используемые в современных ускорителях трехмерной графики.

Буфер шаблонов

Активно используется в играх (особенно в жанре авиасимуляторов) при моделировании ландшафта, самолетов и других объектов вне стеклянной кабины летчика.

Z-буферизация

Изначально применялась в системах автоматизированного проектирования. Часть видеопамяти, отведенная под Z-буфер, содержит информацию о глубине сцены. При визуализации эта информация служит для построения законченного изображения: пиксели, которые располагаются ближе, будут визуализированы, в отличие от пикселей, закрытых другими объектами.

Рельефное текстурирование

Предназначено для воспроизведения специальных световых эффектов, таких, как водная рябь, камни и другие сложные поверхности. Это придает большую реалистичность игровым сценам и ландшафтам.

Улучшенные технологии наложения текстур

Для визуализации трехмерных сцен с высокой степенью детализации необходимо применять специальные методы наложения текстур, которые устраняют нежелательные эффекты и делают сцены более реалистичными.

Билинейная фильтрация. Улучшение качества изображения небольших текстур, помещенных на большие многоугольники. Эта технология устраняет эффект "блочно-сти" текстур.


Множественное отображение. Улучшение качества отображения объектов путем формирования последовательности текстур одного и того же изображения с уменьшающимся разрешением; является разновидностью сглаживания.

Трилинейная фильтрация. Комбинация билинейной фильтрации и так называемого наложения mip mapping (текстуры, имеющие разную степень детализации в зависимости от расстояния до точки наблюдения).

Анизотропная фильтрация. Используемый в некоторых видеоадаптерах, этот тип фильтрации позволяет сделать сцену еще более реалистичной. Однако эта технология пока не получила должного распространения из-за высоких требований к аппаратной части видеоадаптера.

T-буфер. С помощью этой технологии уменьшается эффект "ступенчатости" (искажения в экранном изображении вследствие его масштабирования) в компьютерной графике, например, когда диагональ сформирована "лесенкой", объект перемещается рывками, неточно визуализированы тени, отражения и внешний вид объекта кажется смазанным. При использовании этой технологии кадровый буфер заменяется таким буфером, в котором собирается несколько операций визуализации перед выводом на экран готового изображения. В отличие от других трехмерных технологий, для использования Т-буфера нет необходимости в модификации или оптимизации уже имеющегося программного обеспечения. Основная сфера применения Т-буфера заключается в формировании практически телевизионного реализма в визуализированной трехмерной анимации. Ложкой дегтя в использовании Т-буфера для включения параметра сглаживания является существенное уменьшение скорости работы приложения. Эта технология первоначально зародилась в ныне несуществующей компании 3dfx. Несмотря на некоторые недостатки, поддержка Т-буфера внедрена в DirectX 8.0 и выше, благодаря чему он используется в видеоадаптерах сторонних производителей.

Интегрированные функции трансформации объектов и распределения освещения (T&L). При формировании трехмерной анимации объект трансформируется при переходе из одного кадра в другой, после чего освещение изменяется в соответствии с перемещением объекта. Во многих видеоадаптерах эти функции выполняются графическим процессором, однако в новых моделях видеоадаптеров компаний NVIDIA (GeForce2, GeForce3, GeForce4) и ATI (RADEON 9000, 8500, 7500 и в изначальном адаптере RADEON) функции трансформации и распределения освещения встроены в графический набор микросхем в качестве отдельных модулей. В результате достигается высокая скорость обработки трехмерных данных и высвобождаются ресурсы центрального процессора системы. За более подробной информацией обращайтесь на официальные Web-узлы NVIDIA и ATI.

Полноэкранное сглаживание. Уменьшение неровностей, возникающих при увеличении разрешения, посредством сглаживания цветовых границ для обеспечения плавных цветовых переходов. Ранее сглаживание использовалось только для определенных объектов; современные акселераторы, созданные компаниями nVidia и ATI, позволяют использовать эту технологию для всего экрана. Технология SMOOTHVI-SION компании ATI предоставляет более 10 параметров настройки сглаживания, позволяя пользователю найти оптимальный компромисс между быстродействием системы и качеством изображения. В графическом процессоре GeForce4 Ti используется улучшенная версия метода множественной выборки (ранее применявшегося


в GeForce3), который получил название Accuview AA. В этой технологии объединяется фильтрация сглаживания и сглаживание граней для обеспечения высококачественного и быстродействующего полноэкранного сглаживания.

Виртуальные текстуры. С помощью этой технологии логическое адресное пространство используется для хранения текстур, которые передаются физическим адресам памяти графического ускорителя, видеоадаптера и главной системной памяти. Небольшие логические страницы объемом 4 Кбайт позволяют извлекать данные текстур по мере необходимости и немедленно визуализировать после того, как получен небольшой объем текстурных данных. В результате увеличивается время визуализации, поскольку при обычном подходе перед визуализацией видеоадаптеру необходимо получить всю текстуру целиком. Более подробная информация представлена на Web-узле компании 3Dlabs.

Сопряжение/сглаживание вершин. Сглаживание областей сочленений двух полигональных объектов, например рук или ног с телом анимированного персонажа. Для выполнения функции сопряжения вершин в видеоадаптерах серии GeForce2, 3, 4 компании nVidia используется двухматричная технология на программной основе, а в процессоре RADEON компании ATI - четырехматричное сопряжение, поддерживаемое на аппаратном уровне.

Интерполяция ключевого кадра или трансформация вершин. Оживление перехода от одного выражения лица к другому, что позволяет при отсутствии скелетной анимации сделать мимику более реалистичной. Для получения более подробной информации обратитесь на Web-узел компании ATI.

Программируемая трансформация вершин и обработка полутонов пикселей. Технология nfiniteFX компании nVidia (видеоадаптер GeForce3), позволяющая разработчикам программного обеспечения модифицировать эффекты наподобие сопряжения вершин и обработки полутонов (улучшенный метод преобразования неправильных поверхностей). Это позволяет избавиться от применения относительно малого количества эффектов с заранее определенными характеристиками. Технология nfinite-FXII компании NVIDIA, используемая в графическом процессоре GeForce4 Ti, поддерживает одновременную обработку до четырех текстур, а двойная трансформация вершин обеспечивает прирост производительности при высококачественной визуализации до 50% по сравнению с GeForce3. Аналогичная технология компании ATI, именуемая SmartShader, поддерживает более сложные программы, чем nfiniteFX, и обеспечивает качество изображения, аналогичное тому, что формируется посредством nfiniteFXII. Поддержка SmartShader реализована в DirectX 8.1.

Однопроходная или мультипроходная визуализация

В различных видеоадаптерах применяются разные технологии визуализации. В настоящее время практически во всех видеоадаптерах фильтрация и основная визуализация выполняются за один проход, что позволяет увеличить частоту кадров. Видеоадаптеры с функцией однопроходной визуализации и фильтрации обычно являются более быстродействующими при работе с трехмерными программами и позволяют избежать искажений, вызванных ошибками в множественных вычислениях значений с плавающей точкой во время визуализации.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59] [стр.60] [стр.61] [стр.62] [стр.63] [стр.64] [стр.65] [стр.66] [стр.67] [стр.68] [стр.69] [стр.70] [стр.71] [стр.72] [стр.73] [стр.74] [стр.75] [стр.76] [стр.77] [стр.78] [стр.79] [стр.80] [стр.81] [стр.82] [стр.83] [стр.84] [стр.85] [стр.86] [стр.87] [стр.88] [стр.89] [стр.90] [стр.91] [стр.92] [стр.93] [стр.94] [стр.95] [стр.96] [стр.97] [стр.98] [стр.99] [стр.100] [стр.101] [стр.102] [стр.103] [стр.104] [стр.105] [стр.106] [стр.107] [стр.108] [стр.109] [стр.110] [стр.111] [стр.112] [стр.113] [стр.114] [стр.115] [стр.116] [стр.117] [стр.118] [стр.119] [стр.120] [стр.121] [стр.122] [стр.123] [стр.124] [стр.125] [стр.126] [стр.127] [стр.128] [стр.129] [стр.130] [стр.131] [стр.132] [стр.133] [стр.134] [стр.135] [стр.136] [стр.137] [стр.138] [стр.139] [стр.140] [стр.141] [стр.142] [стр.143] [стр.144] [стр.145] [стр.146] [стр.147] [стр.148] [стр.149] [стр.150] [стр.151] [стр.152] [стр.153] [стр.154] [стр.155] [стр.156] [стр.157] [стр.158] [стр.159] [стр.160] [стр.161] [стр.162] [стр.163] [стр.164] [стр.165] [стр.166] [стр.167] [стр.168] [стр.169] [стр.170] [стр.171] [стр.172] [стр.173] [стр.174] [стр.175] [стр.176] [стр.177] [стр.178] [стр.179] [стр.180] [стр.181] [стр.182] [стр.183] [стр.184] [стр.185] [стр.186] [стр.187] [стр.188] [стр.189] [стр.190] [стр.191] [стр.192] [стр.193] [стр.194] [стр.195] [стр.196] [стр.197] [стр.198] [стр.199] [стр.200] [стр.201] [стр.202] [стр.203] [стр.204] [стр.205] [стр.206] [стр.207] [стр.208] [стр.209] [стр.210] [стр.211] [стр.212] [стр.213] [стр.214] [стр.215] [стр.216] [стр.217] [стр.218] [стр.219] [стр.220] [стр.221] [стр.222] [стр.223] [стр.224] [стр.225] [стр.226] [стр.227] [стр.228] [стр.229] [стр.230] [стр.231] [стр.232] [стр.233] [стр.234] [стр.235] [стр.236] [стр.237] [стр.238] [стр.239] [стр.240] [стр.241] [стр.242] [стр.243] [стр.244] [стр.245] [стр.246] [стр.247] [стр.248] [стр.249] [стр.250] [стр.251] [стр.252] [стр.253] [стр.254] [стр.255] [стр.256] [стр.257] [стр.258] [стр.259] [стр.260] [стр.261] [стр.262] [стр.263] [стр.264] [стр.265] [стр.266] [стр.267] [стр.268] [стр.269] [стр.270] [стр.271] [стр.272] [стр.273] [стр.274] [стр.275] [стр.276] [стр.277] [стр.278] [стр.279] [стр.280] [стр.281] [стр.282] [стр.283] [стр.284] [стр.285] [стр.286] [стр.287] [стр.288] [стр.289] [стр.290] [стр.291] [стр.292] [стр.293] [стр.294] [стр.295] [стр.296] [стр.297] [стр.298] [стр.299] [стр.300] [стр.301] [стр.302] [стр.303] [стр.304] [стр.305] [стр.306] [стр.307] [стр.308] [стр.309] [стр.310] [стр.311] [стр.312] [стр.313] [стр.314] [стр.315] [стр.316] [стр.317] [стр.318] [стр.319] [стр.320] [стр.321] [стр.322] [стр.323] [стр.324] [стр.325] [стр.326] [стр.327] [стр.328] [стр.329] [стр.330] [стр.331] [стр.332] [стр.333] [стр.334] [стр.335] [стр.336] [стр.337] [стр.338] [стр.339] [стр.340] [стр.341] [стр.342] [стр.343] [стр.344] [стр.345] [стр.346] [стр.347] [стр.348] [стр.349] [стр.350] [стр.351] [стр.352] [стр.353] [стр.354] [стр.355] [стр.356] [стр.357] [стр.358] [стр.359] [стр.360] [стр.361] [стр.362] [стр.363] [стр.364] [стр.365] [стр.366] [стр.367] [стр.368] [стр.369] [стр.370] [стр.371] [стр.372] [стр.373] [стр.374] [стр.375] [стр.376] [стр.377] [стр.378] [стр.379] [стр.380] [стр.381] [стр.382]