Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[121]

по которым хранятся данные в памяти. Например, 32-разрядные операционные системы Windows загружаются сверху вниз, так что если установлена оперативная память емкостью 96 Мбайт, то и операционная система, и прикладные программы будут загружаться в верхние 32 Мбайт, которые не кэшируются. Это значительно замедлит работу компьютера в целом. В данном случае можно удалить дополнительную память, чтобы уменьшить емкость до 64 Мбайт. Другими словами, неблагоразумно устанавливать большую емкость памяти, чем позволяет кэшировать набор микросхем системной логики.

Процессор Pentium II и наборы микросхем системной логики более поздних версий не позволяют управлять кэш-памятью второго уровня, так как она встраивается в процессор. Поэтому при использовании Pentium II и процессоров последующих версий устанавливаются определенные ограничения кэширования памяти. Процессоры с внутренним кэшем первого и второго уровней имеют ограничение, равное соответственно 512 Мбайт и 4 Гбайт, а при использовании Pentium III и процессоров последующих версий объем кэшируемой памяти увеличивается до 4 Гбайт. Этот параметр превышает максимальный объем оперативной памяти, которая может поддерживаться тем или другим набором микросхем. Поэтому в подобных системах не следует устанавливать больший объем памяти, чем позволяет контроллер кэш-памяти. Для того чтобы определить ограничения объема кэшируемой памяти, существующие в системе, обратитесь к технической документации набора микросхем системной логики (при использовании систем класса Pentium, процессоров более ранних версий или систем с кэш-памятью, встроенной в системную плату) либо обратите внимание на характеристики процессора (при использовании систем класса Pentium II, процессоров более современных версий или систем с кэш-памятью, встроенной в процессор).

Быстродействие ОЗУ

Быстродействие процессора выражается в мегагерцах (МГц), а быстродействие запоминающего устройства и его эффективность - в наносекундах (нс).

Наносекунда - это одна миллиардная доля секунды, т. е. очень короткий промежуток времени. Заметьте, что скорость света в вакууме равна 299 792 км/с. За одну миллиардную долю секунды световой луч проходит расстояние, равное всего лишь 29,98 см, т. е. меньше длины обычной линейки!

Быстродействие процессоров и микросхем выражается в мегагерцах (МГц), т. е. в миллионах циклов, выполняемых в течение одной секунды. Рабочая частота современных процессоров достигает 3000 и более МГц (3 ГГц, или 3 млрд циклов в секунду), а в следующем году, как ожидается, возрастет до 4 ГГц.

Очень легко запутаться, сравнивая, например, процессор и модули памяти, быстродействие которых выражено в разных единицах. В табл. 6.2 показана зависимость между быстродействием, выраженным в наносекундах (нс) и в мегагерцах (МГц).

Как можно заметить, при увеличении тактовой частоты продолжительность цикла уменьшается, а быстродействие, соответствующее 60 нс памяти DRAM, используемой в обычном компьютере, мизерно по сравнению с процессором, работающим на частоте 400 МГц и выше. Заметьте, что до недавнего времени большинство микросхем DRAM, используемых в персональных компьютерах, имели время доступа 60 нс, которое равнозначно тактовой частоте 16,7 МГц! Поскольку эта "медленная" память устанавливается в системы, в которых процессор работает на частоте 300 МГц и выше, возникает


Таблица 6.2. Зависимость между тактовой частотой в мегагерцах и продолжительностью цикла в наносекундах

Тактовая частота, МГц

Продолжительность цикла, нс

Тактовая частота, МГц

Продолжительность цикла, нс

Тактовая частота, МГц

Продолжительность цикла, нс

4,77

210

366

2,7

1300

0,77

6

167

400

2,5

1400

0,71

8

125

433

2,3

1500

0,67

10

100

450

2,2

1600

0,63

12

83

466

1700

0,59

16

63

500

2,0

1800

0,56

20

50

533

1,88

1900

0,53

25

40

550

1,82

2000

0,5

33

30

566

1,77

2 100

0,48

40

25

600

1,67

2 200

0,45

50

20

633

1,58

2 300

0,43

60

17

650

1,54

2400

0,42

66

15

667

1,5

2 500

0,40

75

13

700

1,43

2 600

0,38

80

13

733

1,36

2 700

0,37

100

10

750

1,33

2 800

0,36

120

8,3

766

1,31

2 900

0,34

133

7,5

800

1,25

3 000

0,33

150

6,7

833

1,20

3 100

0,32

166

6,0

850

1,18

3 200

0,31

180

5,6

866

1,15

3 300

0,30

200

5,0

900

1,11

3 400

0,29

225

4,4

933

1,07

3 500

0,29

233

4,3

950

1,05

3 600

0,28

250

4,0

966

1,04

3 700

0,27

266

3,8

1000

1,0

3 800

0,26

300

3,3

1100

0,91

3 900

0,26

333

3,0

1133

0,88

4 000

0,25

350

2,9

1200

0,83


несоответствие между эффективностью оперативной памяти и процессора. В 2000 году чаще всего применялась память PC100 или PC133, которая работает на частоте 100 или 133 МГц соответственно. Начиная с 2001 года, память стандартов DDR (200 и 266 МГц) и RDRAM (800 МГц) стала завоевывать все большую популярность. В 2002 году появились модули памяти стандарта DDR с частотой 333 и 400 МГц, а также стандарта RDRAM с частотой 1 066 МГц.

Поскольку транзисторы для каждого бита в микросхеме памяти размещены в узлах решетки, наиболее рационально адресовать каждый транзистор, используя номер столбца и строки. Сначала выбирается строка, затем столбец адреса и, наконец, пересылаются данные. Начальная установка строки и столбца адреса занимает определенное время, обычно называемое временем задержки или ожиданием. Время доступа для памяти равно времени задержки для выборки столбца и строки адреса плюс продолжительность цикла. Если длительность цикла памяти равна 7,5 нс (133 МГц), а длительность цикла процессора - 1 нс (1 ГГц), то процессор должен находиться в состоянии ожидания приблизительно 6 циклов - до 17-го цикла, т. е. до поступления данных. Таким образом, состояния ожидания замедляют работу процессора настолько, что он вполне может функционировать на частоте 133 МГц.

Эта проблема существовала на протяжении всей компьютерной эпохи. Для успешного взаимодействия процессора с более медленной основной памятью обычно требовалось несколько уровней высокоскоростной кэш-памяти. В табл. 6.3 показана зависимость между частотами системных плат и быстродействием различных типов основной памяти или используемых модулей оперативной памяти, а также их влияние на общую пропускную способность памяти.

Как правило, компьютер работает гораздо быстрее, если пропускная способность шины памяти соответствует пропускной способности шины процессора. Сравнивая скорость шины памяти с быстродействием шины процессора (табл. 6.4), можно заметить, что между этими параметрами существует определенное соответствие. Тип памяти, пропускная способность которой соответствует скорости передачи данных процессора, является наиболее приемлемым вариантом для систем, использующих соответствующий процессор.

Процессор и основная оперативная память разделены кэш-памятью первого и второго уровней, поэтому эффективность основной памяти зачастую ниже рабочей частоты процессора. Следует заметить, что в последнее время в системах, в которых используются модули памяти SDRAM, DDR SDRAM и RDRAM, тактовая частота шины памяти достигает рабочей частоты шины процессора. Если скорость шины памяти равняется частоте шины процессора, быстродействие памяти в такой системе будет оптимальным.

Дополнительные сведения

Информация о быстром постраничном режиме (FPM) динамической ОЗУ и оперативной памяти EDO представлена на прилагаемом к книге компакт-диске.

SDRAM

Это тип динамической оперативной памяти DRAM, работа которой синхронизируется с шиной памяти. SDRAM передает информацию в высокоскоростных пакетах, использующих высокоскоростной синхронизированный интерфейс. SDRAM позволяет избежать использования большинства циклов ожидания, необходимых при работе асинхронной



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59] [стр.60] [стр.61] [стр.62] [стр.63] [стр.64] [стр.65] [стр.66] [стр.67] [стр.68] [стр.69] [стр.70] [стр.71] [стр.72] [стр.73] [стр.74] [стр.75] [стр.76] [стр.77] [стр.78] [стр.79] [стр.80] [стр.81] [стр.82] [стр.83] [стр.84] [стр.85] [стр.86] [стр.87] [стр.88] [стр.89] [стр.90] [стр.91] [стр.92] [стр.93] [стр.94] [стр.95] [стр.96] [стр.97] [стр.98] [стр.99] [стр.100] [стр.101] [стр.102] [стр.103] [стр.104] [стр.105] [стр.106] [стр.107] [стр.108] [стр.109] [стр.110] [стр.111] [стр.112] [стр.113] [стр.114] [стр.115] [стр.116] [стр.117] [стр.118] [стр.119] [стр.120] [стр.121] [стр.122] [стр.123] [стр.124] [стр.125] [стр.126] [стр.127] [стр.128] [стр.129] [стр.130] [стр.131] [стр.132] [стр.133] [стр.134] [стр.135] [стр.136] [стр.137] [стр.138] [стр.139] [стр.140] [стр.141] [стр.142] [стр.143] [стр.144] [стр.145] [стр.146] [стр.147] [стр.148] [стр.149] [стр.150] [стр.151] [стр.152] [стр.153] [стр.154] [стр.155] [стр.156] [стр.157] [стр.158] [стр.159] [стр.160] [стр.161] [стр.162] [стр.163] [стр.164] [стр.165] [стр.166] [стр.167] [стр.168] [стр.169] [стр.170] [стр.171] [стр.172] [стр.173] [стр.174] [стр.175] [стр.176] [стр.177] [стр.178] [стр.179] [стр.180] [стр.181] [стр.182] [стр.183] [стр.184] [стр.185] [стр.186] [стр.187] [стр.188] [стр.189] [стр.190] [стр.191] [стр.192] [стр.193] [стр.194] [стр.195] [стр.196] [стр.197] [стр.198] [стр.199] [стр.200] [стр.201] [стр.202] [стр.203] [стр.204] [стр.205] [стр.206] [стр.207] [стр.208] [стр.209] [стр.210] [стр.211] [стр.212] [стр.213] [стр.214] [стр.215] [стр.216] [стр.217] [стр.218] [стр.219] [стр.220] [стр.221] [стр.222] [стр.223] [стр.224] [стр.225] [стр.226] [стр.227] [стр.228] [стр.229] [стр.230] [стр.231] [стр.232] [стр.233] [стр.234] [стр.235] [стр.236] [стр.237] [стр.238] [стр.239] [стр.240] [стр.241] [стр.242] [стр.243] [стр.244] [стр.245] [стр.246] [стр.247] [стр.248] [стр.249] [стр.250] [стр.251] [стр.252] [стр.253] [стр.254] [стр.255] [стр.256] [стр.257] [стр.258] [стр.259] [стр.260] [стр.261] [стр.262] [стр.263] [стр.264] [стр.265] [стр.266] [стр.267] [стр.268] [стр.269] [стр.270] [стр.271] [стр.272] [стр.273] [стр.274] [стр.275] [стр.276] [стр.277] [стр.278] [стр.279] [стр.280] [стр.281] [стр.282] [стр.283] [стр.284] [стр.285] [стр.286] [стр.287] [стр.288] [стр.289] [стр.290] [стр.291] [стр.292] [стр.293] [стр.294] [стр.295] [стр.296] [стр.297] [стр.298] [стр.299] [стр.300] [стр.301] [стр.302] [стр.303] [стр.304] [стр.305] [стр.306] [стр.307] [стр.308] [стр.309] [стр.310] [стр.311] [стр.312] [стр.313] [стр.314] [стр.315] [стр.316] [стр.317] [стр.318] [стр.319] [стр.320] [стр.321] [стр.322] [стр.323] [стр.324] [стр.325] [стр.326] [стр.327] [стр.328] [стр.329] [стр.330] [стр.331] [стр.332] [стр.333] [стр.334] [стр.335] [стр.336] [стр.337] [стр.338] [стр.339] [стр.340] [стр.341] [стр.342] [стр.343] [стр.344] [стр.345] [стр.346] [стр.347] [стр.348] [стр.349] [стр.350] [стр.351] [стр.352] [стр.353] [стр.354] [стр.355] [стр.356] [стр.357] [стр.358] [стр.359] [стр.360] [стр.361] [стр.362] [стр.363] [стр.364] [стр.365] [стр.366] [стр.367] [стр.368] [стр.369] [стр.370] [стр.371] [стр.372] [стр.373] [стр.374] [стр.375] [стр.376] [стр.377] [стр.378] [стр.379] [стр.380] [стр.381] [стр.382]