Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[7]

«Излучатель (антенна)

Изолятор

-Фильтр

"Ферритовый стержень Катушка Крышка Резонаторы .Связки

зонат сделг

посте рия s рису> росп и то) сункс дает боле<

Рис. 1.18. Конструкция магнетрона микроволновой печи


Принцип действия магнетрона

Рассмотрим вначале движение электронов в магнетроне, предполагая, что колебаний в резонаторах нет. Для упрощения изобразим анод без резонаторов (рис. 1.19), как будто их забыли сделать.

Под влиянием ускоряющего электрического поля электроны стремятся лететь вдоль его силовых линий, т.е. по радиусам от катода к аноду. Но как только они набирают некоторую скорость, постоянное магнитное поле начинает искривлять их траектории. Так как скорость электронов постепенно нарастает, то радиус этого искривления постепенно увеличивается. Поэтому траектория электронов представляет собой не дугу окружности, а более сложную кривую - циклоиду. На рисунке показаны траектории электронов, вылетевших с катода с ничтожно малой начальной скоростью при разной напряженности магнитного поля Н. Анодное напряжение во всех случаях одно и то же. Если магнитное поле отсутствует, то электрон летит строго по радиусу (траектория 1 на рисунке). При напряженности поля, меньшей некоторого критического значения Нкр, электрон попадает на анод по криволинейной траектории 2. Критическая напряженность поля соответствует более искривленной траектории 3. В этом случае электрон пролетает у самой поверхности анода, почти касаясь ее, и возвращается на катод. Наконец, если поле выше критического, то электрон еще более круто поворачивает обратно (кривая 4).

Рис. 1.20. Вращающееся электронное облако в пространстве взаимодействия

Магнетроны работают при напряженности поля, несколько большей критической. Поэтому электроны при отсутствии колебаний пролетают близко к поверхности анода на различных расстояниях от него в зависимости от начальной скорости. Поскольку одновременно движется очень большое количество электронов, можно считать, что в пространстве взаимодействия вращается электронное облако в виде кольца (рис. 1.20).


Скорость вращения электронного облака зависит от приложенного напряжения и поэтому может регулироваться. Чтобы при ее увеличении электроны не попадали на анод, одновременно необходимо увеличивать и напряженность магнитного поля.

Теперь вернем на место наши резонаторы. Все они сильно связаны между собой, так как магнитное поле каждого из них замыкается, проходя через смежные резонаторы (рис. 1.21).

Рис. 1.21. Связь между резонаторами магнетрона с помощью магнитного поля

Переменное электрическое попе в магнетронных резонаторах сосредоточено в области щели, причем значительная его часть проникает в область взаимодействия, что имеет принципиальное значение в работе магнетрона. Движение электронного облака в пространстве взаимодействия будет наводить токи в резонаторах. Однако в начальный момент увеличение амплитуды колебаний будет сдерживаться тем, что движение электронов не синхронизировано, и в то время, как одни электроны будут возбуждать колебания, отдавая им часть своей кинетической энергии, другие будут эти колебания гасить. Кроме того, если сдвиг фаз в соседних резонаторах не синхронизирован со скоростью электронов, то один и тот же электрон, отдавая энергию одному резонатору, будет ее тут же отбирать у другого. Обычно для нормальной работы магнетрона требуется, чтобы фазы соседних резонаторов были смещены на 180°, т.е. на тс радиан. Поэтому такой вид колебаний называется к - видом. Чтобы способствовать возбуждению этого вида и препятствовать возбуждению остальных, в магнетроне используются металлические связки, которые электрически соединяют между собой четные и нечетные резонаторы.

Предположим, что в какой-то момент времени в резонаторах случайным образом возникли колебания нужного нам вида (рис. 1.22). Попытаемся доказать, что при правильно заданных режимах магнетрона эти колебания будут усиливаться за счет автоматической группировки электронов.

В любой точке пространства взаимодействия мы можем рассматривать СВЧ поле как сумму двух составляющих: радиальной - направленной по радиусу от центра магнетрона, и перпендикулярной ей касательной составляющей. Рассматривая рис. 1.22, можно заметить следующую характерную особенность: во всем пространстве, находящемся под отрицательным сегментом, радиальная составляющая поля направлена к катоду, а во всем пространстве под положительным сегментом она направлена к аноду (поле считаем направленным в ту сторону, куда движется электрон под действием этого поля). Границами, разделяющими эти пространства, являются плоскости, проходящие через ось магнетрона и середины щелей. Обозначим одну из таких плоскостей буквами АА. Слева от этой плоскости радиальная составляющая будет ускорять электроны, поскольку она совпадает по знаку с постоянным анодным напряжением. Так как под влиянием магнитного поля направление скорости изменяется, то через некоторое время увеличение скорости в радиальном направлении превращается в увеличение скорости по направлению к плоскости АА.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59] [стр.60] [стр.61] [стр.62] [стр.63] [стр.64] [стр.65] [стр.66] [стр.67] [стр.68] [стр.69] [стр.70] [стр.71] [стр.72] [стр.73] [стр.74] [стр.75] [стр.76] [стр.77] [стр.78] [стр.79] [стр.80] [стр.81] [стр.82] [стр.83] [стр.84] [стр.85] [стр.86] [стр.87]