Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[16]

едином технологическом цикле с каркасом, путем перфорации последнего в надлежащем месте. Размеры отверстий в окне не превышают 3 мм, что практически полностью исключает проникновение сквозь них микроволновой энергии.

Между корпусом и дверцей микроволновой печи почти всегда имеются щели. Очень сложно обеспечить плотный контакт этих деталей по всему периметру в течение всего срока эксплуатации. Если не принять соответствующих мер, микроволновое излучение будет проникать сквозь эти щели наружу, даже если их размер относительно невелик. Чтобы исключить такое развитие событий, в дверце имеется специальное устройство, именуемое СВЧ дросселем. Конструктивно он выполнен в виде паза, проходящего по всему периметру контакта дверцы с корпусом. На рис. 2.12 показано поперечное сечение дросселя. В разных микроволновых печах форма его профиля может несколько отличаться от приведенной на рисунке, но принцип действия всех дросселей одинаков.

U-A./4-

Рис. 2.12. Принцип действия дроссельного уплотнения

Как было показано в первой главе, излучение сквозь щель возникает в том случае, когда она обрывает линии СВЧ тока. Если в месте ее расположения СВЧ токи отсутствуют или ориентированы вдоль щели, излучения наблюдаться не будет. Таким образом, задача подавления СВЧ излучения сводится к тому, чтобы в месте контакта дверцы с камерой устранить поперечные СВЧ токи. Решая поставленную задачу в лоб, успеха не добиться, поскольку, обеспечивая равномерность нагрева, мы приняли все меры, чтобы направление и амплитуда СВЧ токов постоянно менялись. Рассмотрим, как справляется с этой проблемой СВЧ дроссель.

Паз располагается на расстоянии в четверть длины волны от отверстия камеры. Его глубина также равна А/4. Два четвертьволновых отрезка образуют полуволновую линию с коротким замыканием на ее конце и разрывом в точке А, находящейся в середине линии. В короткозамкнутой полуволновой линии электромагнитное попе существует в виде стоячей волны. Это означает, что пространственное распределение электрического и магнитного поля, а следовательно, и токов не меняется. При выбранных размерах паза и расстоянии от него до камеры распределение токов вдоль зазора и паза будет таким, что в месте разрыва ток практически равен нулю. Поэтому просачивание электромагнитной энергии во внешнее пространство будет очень незначительным. Его величина напрямую зависит от амплитуды тока в месте разрыва, которая, в свою очередь, зависит от местоположения и размеров зазора. Для большей наглядности размеры зазора и паза на рисунке непропорциональны. В действительности зазор обычно не превышает 0.1 мм, в то время как четверть длины волны составляет более 30 мм.

Из электродинамики известно, что входное сопротивление короткозамкнутой попувопновой линии равно нулю. Физически это означает, что зазор шириной d между стенкой камеры и дверцей практически не представляет никакого сопротивления для тока I, протекающего в указанном на рисунке направлении. Здравомыслящему, но непосвященному читателю такое утверждение может показаться абсурдом, поскольку непонятно, каким образом электроны, как носители тока, могут преодолеть подобную преграду. Сравнение с конденсатором в данном случае не годится, так как емкость зазора относительно невелика. Ответ легко найдется, если вспомнить принцип действия трансформатора, в котором электрически изолированные друг от друга обмотки обмениваются энергией с помощью магнитного поля. В нашем случае происходит нечто подобное. Ток, протекающий с одной стороны зазора, создает в нем магнитное поле, которое, в свою очередь, возбуждает ток на противоположной стороне. Разница лишь в том, что вместо магнитопровода и большого ко-


личества витков мы используем полуволновую линию. Таким образом, преобразовав щель в полуволновую линию, мы избавились от необходимости в хорошем электрическом контакте между дверцей и стенками камеры. Более того, непосредственный электрический контакт, из-за непредсказуемости его возникновения и влияния на параметры дросселя, в микроволновых печах искусственно устраняется. Для этого внутреннюю сторону дверцы, а иногда и камеры, покрывают эмалью. Такое покрытие, кроме всего прочего, устраняет возможное искрение между дверцей и стенками камеры.

Рассмотрим основные неисправности, связанные с работой дверцы.

В некоторых печах, особенно старых типов конструкции, наблюдается повышенное фоновое излучение. В большинстве случаев это вызвано увеличением зазора d между дверцей и лицевой плоскостью камеры. Нормальный зазор соизмерим с толщиной листа машинописной бумаги. Поэтому вышеупомянутый лист может служить своеобразным инструментом, с помощью которого мы достаточно легко можем определить, соответствует ли зазор требуемым параметрам. Если между дверцей и камерой лист проходит с усилием или не проходит вообще, значит, все в порядке, если же лист входит свободно, значит, необходимо уменьшить зазор. Измерение величины зазора необходимо проводить по всему периметру дверцы. Сразу оговоримся, что регулировку дверцы можно проводить только при наличии приборов, позволяющих измерить величину фонового излучения. Делать это вслепую не только бессмысленно, но и опасно. Если не для жизни, то для зрения.

Имеются лишь две точки, где есть возможность регулировки зазора. Во-первых, в месте крепления дверцы к камере. Если повышенный фон наблюдается со стороны крепления, нужно ослабить винты, крепящие дверцу, придвинуть ее к камере, чтобы устранить зазор, и зажать винты. Все операции лучше производить при закрытой дверце, иначе можно переусердствовать и, устранив большой зазор с одной стороны, получить еще больший с противоположной. Со стороны блока управления регулировку зазора можно осуществить смещением механизма защелки вглубь корпуса. Для этого нужно ослабить винты, крепящие указанный механизм, сместить его в нужную сторону и вновь зажать винты. В принципе, защелка не имеет каких-либо пазов, позволяющих двигать ее в произвольном направлении, но, поскольку величина требуемого смещения не превышает нескольких десятых миллиметра, существующий люфт между винтами и отверстиями под них позволяет это сделать. Здесь также важно не перестараться и следить за тем, чтобы после всех манипуляций дверца хорошо закрывалась и оба запора включали блокировочные микропереключатели.

В некоторых печах российского производства увеличение зазора бывает связано с перекосом дверцы. При этом бывает, что в одном или двух углах зазор выше допустимого, а в остальных нормальный. Любая регулировка дверцы приводит только к тому, что ситуация зеркально меняется. Такой перекос иногда удается устранить. Для этого нужно отжать винты, крепящие перфорированное металлическое окно, слегка выгнуть дверцу в противоположном перекосу направлении и, не отпуская дверцы, зажать винты.

Наибольшая часть неисправностей дверцы связана с работой запоров, механизма фиксации и механизма открывания дверцы. Как правило, это чисто механические поломки и ремонт сводится к изготовлению и замене сломанной детали.

Иногда между дверцей и стенками камеры возникает искрение. Причина этого кроется в повреждении эмали на внутренней поверхности дверцы. Устранить это довольно просто, необходимо лишь закрасить поврежденный участок тонким слоем лака или эмали.«

2.2. Магнетрон

Внешний вид магнетрона представлен на рис. 2.13. Излучение микроволновой энергии осуществляется от антенны 1, представляющей собой штенгель, на который плотно посажен металлический колпачок (штенгель - заваренная трубка, через которую в процессе производства магнетрона откачивался воздух). Антенна изолирована от корпуса 6, по переменному току, керамическим цилиндром 2. Внешний кожух магнетрона 3 совместно с фланцем 4 составляют магнито-провод, формирующий необходимое распределение магнитного поля, источником которого служат кольцевые магниты 5. Фланец используется также для крепления магнетрона к микроволновой печи. Радиатор 7 служит для более интенсивного охлаждения магнетрона во время работы. Коробка фильтра 8 содержит внутри себя индуктивные выводы, которые совместно с проходными конденсаторами 9 образуют высокочастотный фильтр, снижающий проникновение СВЧ-излучения по выводам питания 10.


1Ь в полу-жду двер-:т, из-за ых печах жрывают верцей и

фоновое пицевой и. Поэто-"0 мы до-и между 1ке, если ра необ-ы можно эния. Де-

в месте /жно ос-ь винты. л, устра-1Ы блока ь корпу-ю сторо-игать ее jaeT не-х позво-пе всех еключа-

переко-тапьных меняет-фориро-гении и,

/1ксации сводится в подход им о

"ии осу-вталли-зодства /, кера-агнито-служат вой пе-лэробка нденса-о выво-

Надежность контакта между магнетроном и корпусом микроволновой печи обеспечивается кольцом из металлической сетки.

В таблице 2.1 представлены параметры некоторых типичных магнетронов для микроволновых печей.

Рис. 2.13. Магнетрон

Скорость приготовления пищи в микроволновой печи напрямую зависит от мощности, которую способен генерировать магнетрон. В настоящее время большинство печей имеют магнетроны с номинальной мощностью 700 - 850 Вт, что позволяет, например, довести двухсотграммовый стакан воды до кипения в течение 2 - 3 минут. Таким образом, можно простыми средствами оценить мощность микроволновой печи. Для более точных измерений можно воспользоваться формулой:

где Ср - удельная теплоемкость нагреваемого продукта (для воды Ср=4180 джоуль/градус), m - масса продукта (кг), AT - разность температур, t - время нагрева (с).

При стандартных измерениях объем воды должен составлять 1000±5 мл, время нагрева 60+1 с, а начальная температура не должна превышать 20°С. В этом случае исходная формула принимает более простой вид:

Воду желательно налить в тонкостенный сосуд из боросиликатного стекла. Перед измерением температуры воды после нагрева воду в сосуде необходимо тщательно перемешать.

Рассмотрим пример: предположим, мы поместили литровую банку воды, с начальной температурой 10°С, в микроволновую печь и включили нагрев на одну минуту. После отключения печи температура воды оказалась 22°С. Отсюда мощность, поглощенная нагрузкой, составит:

Р=70»(22-10)=840 Вт.

Неисправности магнетронов условно можно разбить на две группы: подлежащие восстановлению и прочие. Вначале кратко остановимся на безнадежных случаях. К ним можно отнести: обрыв ипи перегорание накала, нарушение вакуума, полное отсутствие генерации при наличии необходимых напряжений и исправном накале, короткое замыкание между анодом и катодом.

Теперь более подробно остановимся на случаях, когда положение можно спасти. Наиболее часто встречающаяся ситуация из этого перечня - это пробой проходных конденсаторов. Наличие такого пробоя легко обнаружить тестером, проверив сопротивление между выводами магнетрона и корпусом, при отключенной внешней цепи. Если оно отлично от бесконечности, нужно снять крышку с коробки фильтра и откусить провода, соединяющие конденсаторы с катушками фильтра. После этого повторить измерения. Если после этой операции показания прибора не изменятся, значит, конденсатор пробит. В этом случае вам повезло и вы отделаетесь малой кровью. Если же



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59] [стр.60] [стр.61] [стр.62] [стр.63] [стр.64] [стр.65] [стр.66] [стр.67] [стр.68] [стр.69] [стр.70] [стр.71] [стр.72] [стр.73] [стр.74] [стр.75] [стр.76] [стр.77] [стр.78] [стр.79] [стр.80] [стр.81] [стр.82] [стр.83] [стр.84] [стр.85] [стр.86] [стр.87]