Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[1]

электродинамике. Существуют уравнения Максвелла, более полно описывающие процессы, связанные с электромагнитным полем во всем спектре электромагнитных колебаний. Законы классической электротехники, как и законы оптики, можно считать частными случаями уравнений Максвелла. В свою очередь, и уравнения Максвелла не являются универсальными. При электромагнитных взаимодействиях эпементарных частиц вступают в силу законы квантовой механики, дополняющие уравнения Максвелла. Вполне возможно, что через некоторое время и законы квантовой механики также придется рассматривать как частный случай более общей теории. Уже давно ученые пытаются вывести единую теорию поля, объединяющую все известные виды взаимодействий: гравитационное (описывающее силы притяжения), электромагнитное, сильное и слабое (последние проявляются на уровне атомного ядра). Может возникнуть резонный вопрос: зачем вообще использовать большое количество частных законов, не проще ли пользоваться одним универсальным?

Но проблема в том, что чем более общий характер носит тот или иной закон природы, тем сложнее его практическое использование. К примеру, самый отпетый троечник, имея под рукой нужные формулы, без труда вычислит мощность, теряемую в резисторе при прохождении электрического тока. Но попробуйте решить ту же задачу с помощью уравнений Максвелла. Без всяких натяжек это предмет для докторской диссертации. Исключительно для иллюстрации ниже приведена система указанных уравнений для изотропной и однородной среды:

rotH = aE + ee0 , at

rotE = -цц0

div(ee0E) = 0; div(wa0H) = 0.

Что будет в случае анизотропной и неоднородной среды, читатель может домыслить сам.

Если бы электротехникам, в своей работе, приходилось пользоваться исключительно данными уравнениями, мы, скорее всего, до сих пор читали бы при свечах. К счастью, природа распорядилась иначе. Так в низкочастотной электронике, используются намного более простые физические законы, которые можно теоретически вывести из уравнений Максвелла, хотя ради справедливости следует отметить, что большинство из них были экспериментально открыты до того, как Максвелл создал свои уравнения. Такое упрощение возможно, когда размеры электронных компонентов намного меньше длины волны. В этом случае излучение радиоволн практически отсутствует и, поэтому, можно считать, что вся энергия передается вдоль проводников, в виде электрического тока1. В качестве примера, представим, что на пути проводника с током имеется резистор. Если излучение отсутствует, теряемую в нем мощность можно легко вычислить по простой формуле:

Р = l2R

Но, если этот же резистор поставить на пути распространения электромагнитной волны, то

результат будет не столь очевиден.

Как уже отмечалось, микроволновый диапазон - это та часть электромагнитного спектра, где классическая электротехника уже не работает, а относительно простые законы оптики еще не работают. Поэтому при решении электродинамических проблем в указанном диапазоне приходится либо изощряться, приспосабливая законы оптики и классической электротехники к СВЧ, либо пытаться решать уравнения Максвелла, что в некоторых случаях приносит свои плоды. Смысл этих уравнений состоит в следующем:

Первое уравнение говорит нам о том, что источником магнитного поля могут служить пибо протекающий ток, либо меняющееся во времени электрическое поле. В некотором смысле это

1На самом деле и в этом случае энергия передается посредством электромагнитного поля. Провода лишь указывают полю маршрут. В качестве доказательства можно привести простой пример: обычная телефонная связь между Санкт-Петербургом и Владивостоком осуществляется по проводам. Если бы энергия передавалась не полем, а носителями тока - электронами, скорость которых значительно меньше скорости света, то ты, и ответ на "Привет!" ждать пришлось бы часами.иной


сходные вещи, поскольку электрический ток представляет собой движение электрических зарядов, а каждый движущийся заряд меняет окружающее электрическое поле и тем самым создает вокруг себя магнитное поле. Это объясняет существование магнитного поля вокруг проводников на постоянном токе. Оно создано совокупностью всех движущихся по проводнику зарядов.

Из второго уравнения следует, что меняющееся во времени магнитное поле порождает замкнутое электрическое поле. Остановимся на этом следствии более подробно.

В низкочастотной электронике принято считать, что источником электрического поля служат электрические заряды. В этом случае силовые линии поля исходят с поверхности заряда или сходятся на нем. Система уравнений Максвелла это не отвергает, указанное свойство отражено в третьем уравнении, однако помимо этого может существовать такая конфигурация электрического поля, когда его силовые линии замкнуты сами на себя, аналогично магнитным силовым линиям. Подобное поле может существовать только в динамике, и чем быстрее происходит изменение магнитного поля, тем благоприятнее условия для возникновения электрического. Именно поэтому на низких частотах полевые эффекты практически не проявляются и ими можно пренебречь. Наличие кольцевого электрического поля создает возможность для возникновения и распространения радиоволн. Поясню это на следующем примере: допустим, у нас имеется проводник, по которому протекает высокочастотный ток. Вокруг этого проводника, следовательно, будет существовать быстро изменяющееся магнитное поле. Это, в свою очередь, приведет к возникновению кольцевого электрического поля, меняющегося с той же частотой. Последнее породит магнитное поле, и так до бесконечности. Исходный проводник с током, являющийся антенной, только инициирует процесс, а дальше все происходит само собой. Энергия электрического поля переходит в магнитную энергию, и наоборот. Причем весь этот процесс не стоит на месте, а распространяется с максимально допустимой скоростью - 300 ООО км/сек.

И, наконец, последнее уравнение Максвелла указывает на отсутствие в природе одиночных магнитных зарядов. Последнее обстоятельство вносит некоторую асимметрию в систему уравнений. Действительно, если в электростатике имеются положительные и отрицательные заряды, способные существовать независимо друг от друга, то магнитные полюса неразделимы, как сиамские близнецы. На какие бы мелкие части мы ни дробили постоянный магнит, мы никогда не получим отдельно S или N полюс. Подобная асимметрия, как бы демонстрирующая приоритет одного поля над другим, смущала многих физиков с момента появления рассматриваемых уравнений. Попытки обнаружить отдельный магнитный полюс никогда не прекращались и предпринимаются до сих пор. И не только из праздного научного любопытства. Если бы удалось на практике разделить магнитные полюса, это совершило бы такую революцию в технике, масштабы которой трудно даже представить.

Заканчивая с разбором уравнений Максвелла, совершим небольшой экскурс в историю. В середине прошлого века, когда были получены эти уравнения, о существовании электромагнитных волн еще никто не подозревал. Эти уравнения как бы обобщали и сводили воедино все, что было известно физикам т.ого времени об электричестве и магнетизме. Лишь в результате анализа полученных уравнений Максвелл пришел к выводу о наличии в природе электромагнитных волн и о скорости их распространения, в точности совпадающей с известной к тому времени скоростью света. На основании этого была высказана гипотеза об электромагнитной природе видимого света, подтвержденная дальнейшими исследованиями.

Примерно такая же ситуация возникла при открытии Менделеевым его Периодической таблицы, предсказавшей существование в природе многих химических элементов, до той поры неизвестных науке. Уместно в этой связи привести слова немецкого физика Генриха Герца, посвященные теории Максвелла: "Нельзя изучать эту удивительную теорию, не испытывая по временам такого чувства, будто математические формулы живут собственной жизнью, обладают собственным разумом, - кажется, что эти формулы умнее нас, умнее даже самого автора, как будто они дают нам больше, чем в свое время было в них заложено". И действительно, мог ли предположить Максвелл, какой переворот в жизни людей совершит практическая реализация изобретений, в основе которых лежат четыре его уравнения.

1.2. Элементы микроволновой техники

Вполне понятно, что специфика СВЧ излучения накладывает свой отпечаток и на компоненты, из которых строятся электрические схемы. Мы рассмотрим только те из них, которые в той или иной мере встречаются в микроволновых печах.


Волноводы

Для передачи энергии от генератора к нагрузке в СВЧ диапазоне используются волноводы. Волновод представляет собой полую, металлическую трубу, как правило, круглого или прямоугольного сечения (рис. 1.3).

Рис. 1.3. Внешний вид прямоугольного и круглого волноводов

Электромагнитная энергия передается по волноводу примерно так же, как вода по водопроводной трубе. В принципе, водопроводная труба, если ее тщательно очистить от грязи и накипи, вполне может быть использована и для транспортировки электромагнитных волн. Продолжая аналогию, можно заметить, что в местах протечки воды может просачиваться и электромагнитная энергия, поэтому сочленение отрезков волноводов необходимо производить как можно плотнее. На этом, пожалуй, сходство заканчивается, и начинаются различия. Глядя на рисунок, нетрудно понять, что изготовление волноводов вещь не простая и дорогостоящая. В отличие от ржавых внутренностей водопроводной трубы внутренняя поверхность волноводов часто полируется и покрывается тонким слоем серебра. Очевидно, что переход с обычной двухпроводной линии на волноводы произошел не с целью экономии средств. Остановимся более подробно на причинах такого перехода. Как уже отмечалось, с повышением частоты возрастает доля мощности, теряемой на излучение. Кроме того, что это плохо само по себе, это приводит к засорению эфира радиопомехами и отрицательно сказывается на здоровье радио- и электронных устройств. Поэтому уже в метровом диапазоне передача сигналов осуществляется по коаксиальному кабелю, представляющему собой двухпроводную линию, у которой один проводник выполнен в виде экранирующей оплетки, предотвращающей излучение энергии. Однако при дальнейшем повышении частоты возрастают потери, связанные с затуханием сигнала в материале, заполняющем пространство между центральной жилой и оплеткой кабеля. При достаточно высокой частоте и большой передаваемой мощности это. приводит к перегреву кабеля и выходу его из строя. Например, коаксиальный кабель РК-75 с полиэтиленовым наполнением и длиной 10 м на частоте 3 ГГц теряет 84% передаваемой мощности. Медный прямоугольный волновод при тех же условиях теряет всего около 5% мощности. Используя в качестве наполнителя материалы с малым затуханием, можно повысить уровень допустимой передаваемой мощности, а поскольку наименьшими потерями обладает воздушное заполнение, то кабель естественным образом трансформируется в коаксиальный волновод. Конструктивно последний уже ничем не проще волноводов, изображенных на рис. 1.3, скорее даже наоборот, поэтому выбор типа волновода определяется уже не экономической целесообразностью, а различием в их характеристиках. Может возникнуть вопрос, откуда вообще берутся потери в волноводе, если он изготовлен из меди с площадью поперечного сечения в десятки миллиметров? Ответ заключается в том, что токи текут не по всему сечению волновода, а лишь там, куда проникает электромагнитное поле по так называемому скин-слою. Глубина скин-слоя зависит от частоты и удельной проводимости металла, из которого изготовлен волновод. Она вычисляется по формуле:

5[мкм]= 0.016

Ч[ГГц-оБ/Ом-м]

К примеру, на частоте 2.45 ГГц глубина проникновения поля составляет от 1.3 мкм для меди до 10 мкм для нержавеющей стали. Поэтому общая площадь поперечного сечения, по которому проходит ток, относительно невелика. Большое значение имеет качество внутренней поверхности волновода. Чем выше шероховатость стенок волновода, тем длиннее путь СВЧ токов и тем быст-



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59] [стр.60] [стр.61] [стр.62] [стр.63] [стр.64] [стр.65] [стр.66] [стр.67] [стр.68] [стр.69] [стр.70] [стр.71] [стр.72] [стр.73] [стр.74] [стр.75] [стр.76] [стр.77] [стр.78] [стр.79] [стр.80] [стр.81] [стр.82] [стр.83] [стр.84] [стр.85] [стр.86] [стр.87]